Targeted cellular delivery of quantum dots loaded on and in biotinylated liposomes.

نویسندگان

  • Valeria Sigot
  • Donna J Arndt-Jovin
  • Thomas M Jovin
چکیده

We describe the preparation, biophysical characterization, and receptor-mediated cellular internalization of biotinylated lipid particles (BLPs) loaded on the surface and internally with two distinct (colors) of quantum dot (QD) probes. BLPs were formulated with 1.4 and 2.7 mol % PEG-lipids containing either a fusogenic or pH-sensitive lipid to promote bilayer destabilization of endosomal membranes and favor QD cytoplasmic release. The amount of PEG was chosen to provide steric stabilization of the final construct. BLPs were loaded with a red-emitting QD(655) and surface coated with a green-emitting QD(525) conjugated to the epidermal growth factor (EGF) ligand in order to target the epidermal growth factor receptor (EGFR). The targeted and QD labeled BLPs showed strong and selective binding to EGFR-expressing tumor cell line and subsequent internalization. The dual-color QD labeling strategy and colocalization analysis allow prolonged live cell imaging of BLPs and loaded cargo independently, using a single excitation wavelength and simultaneous detection of both QDs. The chemistry of bioconjugation for the EGF ligand, the QDs, and the BLPs in a single lipid particle, involves only biotin-streptavidin interaction without requiring further purification from free EGF-QDs preformed complexes. Coupled with an encapsulated drug, the targeted and QD-labeled BLPs could provide imaging and drug delivery in a single multifunctional carrier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assembly, characterization, and delivery of quantum dot labeled biotinylated lipid particles.

Lipid nanoparticles composed of mixtures of PEGylated-lipids; cationic and neutral lipids prepared by detergent dialysis can encapsulate biological active molecules and show considerable potential as systemic therapeutic agents. Addition of biotinylated lipids to this formulation allows surface modification of these particles with a suitable ligand or probe conjugated to streptavidin for specif...

متن کامل

I-7: Maternal Signalling to the Placenta

Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers

Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity f...

متن کامل

In vivo effects of quantum dot on organs development before maturity

Objective(s):  The field of nanotechnology is rapidly expanding .The development quantum dots quantum dot (QDs), show great promise for treatment and diagnosis of cancer and targeted drug delivery little data on the toxicity of QDs, especially for in vivo applications, are available. As a result, concerns exist over their toxicity for in vivo applications. Then, cytotoxic effects of cadmium sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioconjugate chemistry

دوره 21 8  شماره 

صفحات  -

تاریخ انتشار 2010